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Abstract. The canonical-basis HFB method provides an efficient way to describe pairing correlations in-
volving the continuum part of the single-particle spectrum in coordinate-space representations. It can be
applied to super-conducting deformed drip-line nuclei as easily as to stable or spherical nuclei. This method
is applied to a simulation of the approach to the neutron drip line. It turns out that the HFB solution
has a stronger pairing and a smaller deformation as the Fermi level is raised. However, such changes are
smooth and finite. No divergences or discontinuities of the radius or other quantities are found in the limit
of zero Fermi energy. The nuclear density continues to be localized even a little beyond the drip line.

PACS. 21.10.Pc Single-particle levels and strength functions – 21.30.Fe Forces in hadronic systems and
effective interactions – 21.60.Jz Hartree-Fock and random-phase approximations

In nuclei near the neutron drip line, the pairing corre-
lation among the neutrons involves significantly the con-
tinuum (positive-energy) part of the Hartree-Fock (HF)
single-particle states. In principle, there is no difficulty
to treat such nuclei with the Hartree-Fock-Bogoliubov
(HFB) method, which is the framework to incorporate
the pairing correlation into mean-field approximations.
Indeed, there is no practical problem concerning spheri-
cal nuclei [1,2]. However, deformed nuclei are not so easy
to treat. The difficulty originates in the huge number of
quasiparticle states, most of which are spatially dislocal-
ized continuum-spectrum states. In the quasi-particle for-
malism, two methods have been used to overcome the dif-
ficulty, one using transformed oscillator basis [3] and the
other using a coordinate mesh but only for axially sym-
metric nuclei [4].
Mathematically, HFB ground states can be expressed

in the form of the BCS variational function. The single-
particle states in this expression are localized. They are
called the HFB canonical basis. This localization makes
the level density of the canonical basis by far smaller
than that of the quasiparticle states because the former is
proportional to the volume of the nucleus while the latter
to the volume of the cavity to discretize the positive
energy orbitals. The canonical-basis HFB method enables
one to obtain the canonical orbitals without knowing
anything about the huge number of quasiparticle states.
It can be applied to deformed neutron-rich nuclei without
difficulties.
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The canonical-basis HFB method was originally in-
troduced for spherical nuclei in ref. [5]. I improved the
method and implemented it for deformed nuclei [6,7]. I
also found the necessity of momentum dependence for
the contact pairing interactions if one employs completely
coordinate-space representations (like three-dimensional
Cartesian mesh, unlike the radial mesh).

In quasiparticle HFB method, the canonical orbitals
are obtained from the one-body density matrix and thus
people have not noticed the existence of a more direct re-
lation to the Hamiltonian. The canonical-basis formalism
discloses this relation. Namely, canonical orbitals above
the Fermi level are roughly the bound eigenstates of the
pairing Hamiltonian. It is not the HF Hamiltonian which
generates them. This finding is helpful to understand the
shell structure in the continuum part of the spectrum [7].

Now, let me show a result of a calculation performed
with the canonical-basis method. It is a simulation of
the approach to the neutron drip line. The system is the
N = Z = 14 nucleus. Instead of increasing the difference
N −Z, I modify the parameters of the mean-field interac-
tion. Namely, t0 of the Skyrme force is increased (toward
zero from below) to raise the Fermi level while t3(> 0) is
decreased so that the saturation density of the symmetric
nuclear matter is unchanged. This approach is taken only
because the present version of my computer program is
designed for N = Z systems. I will examine the adequacy
of this approach in future.

The interaction in the mean-field channel is the
Skyrme SIII force [8] without the spin-orbit term. The
coulomb force is also turned off. Owing to the omission of
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Fig. 1. The average pairing gap (top), the quadrupole defor-
mation parameter β (middle), and the root-mean-square radius
(bottom) plotted versus the Fermi level.

these two interactions, the single-particle states are four-
fold degenerated. I take into account 70 canonical basis
states in each of the four spin-isospin sectors. The param-
eters of the pairing interaction [7] are vp = −880MeV fm

3,
kc = 2 fm

−1, and ρc = 0.32 fm
−3, and ρ̃c =∞.

A three-dimensional Cartesian mesh representation
is employed to express the single-particle wavefunctions
without assuming any spatial symmetries. The mesh spac-
ing is 0.8 fm while the edge of the cubic cavity is 40 fm.
Figure 1 shows how the HFB ground state changes as

the Fermi level (λ) rises. The pairing gap is enhanced al-
most by a factor of two at the drip line (where λ = 0MeV)
compared with the solution for the original SIII force
(λ = −11.7MeV). The quadrupole deformation β is de-
creased by the enhanced pairing. The nucleus has a large
prolate deformation at λ = −11.7MeV but becomes
spherical for λ > −5.5MeV. On the other hand, the r.m.s.
radius does not change so much. Its increase is only 35%
even at the drip line. Dislocalization of the density occurs
not at λ = 0MeV but at higher λ (0.8MeV). One can see
only smooth changes at λ ∼ 0MeV.
Figure 2 shows the energies (expectation value of the

HF Hamiltonian) of canonical-basis states. One can see
that discrete bound states are obtained for both nega-
tive and positive energies. For λ > −5.5MeV, the nu-
cleus becomes spherical and the levels are degenerated. At
λ ∼ −3MeV, the orbitals are (from the bottom) s, p, s, d,
p, f, s, d, g, etc. Here again, there seems to be no violent
changes at λ ∼ 0MeV. Positive-energy localized s orbitals
begin to spread over the cavity only for λ > 300 keV.
Considering general properties of HFB solutions [1],

the true ground state must be a dislocalized state. The
reason for the appearance of a localized solution seems
to be as follows. The dislocalization of an orbital requires
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Fig. 2. Expectation value of the HF Hamiltonian for each
canonical-basis state plotted versus the Fermi level.

the increase of v2 toward 1 because otherwise the orbital
is confined in the pairing potential, which is usually very
deep compared with the size of the kinetic energy term
of the pairing Hamiltonian. However, since v2 = 1 cor-
responds to weaker pairing correlation and larger total
energy, a dislocalized solution is not necessarily reached
in the iteration process of the gradient method in certain
circumstances like when the Fermi level is positive but
low. In contrast, with methods based on the diagonaliza-
tion of the quasi-particle Hamiltonian, a direct jump to
v2 = 1 can take place and it results in the dislocaliza-
tion of the corresponding orbital as soon as it becomes
energetically favorable.
The localized HFB solutions for positive Fermi energies

obtained in the canonical-basis formalism may be used
as rough approximations to the nuclei just beyond the
neutron drip line.
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